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Abstract

Numerical values are presented for the admittance of an infinite
cylindrical antenna excited at a circumferential gap of finite thickness
and immersed in a lossy, isotropic, compressible plasma. The formu-
lation uses the linearized hydrodynamic equations for the electrons (ion
motion is neglected) together with Maxwell's equations. A free-space layer
of finite, variable thickness (the vacuum sheath) is used to approximate the
positive ion sheath which forms about a body at floating potential in a warm
plasma. The antenna admittance is obtained by direct numerical integra-
tion of the Fourier integral for the antenna current, and is presented for
plasma parameter values typical of the E-region of the ionosphere.

The results obtained show for the parameter range investigated that
above the plasma frequency, the electron temperature, electron collisions
and the sheath have relatively little influence on the admittance. Below the
plasma frequency, the admittance is very dependent upon these parameters.
In particular, a rather marked maximum in both the conductance and sus-
ceptance is found at about half the plasma frequency, which is not present
when the sheath thickness and electron temperature are both zero. Of
particular interest is the large increase which may be exhibited by the an-
tenna conductance below the plasma frequency because of the finite electron
temperature compared with the zero temperature conductance, for a given

value of collision frequency.
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I Introduction

There is currently a great deal of interest in the impedance
characteristics of plasma-immersed antennas in connection with the possible
exploitation of rocket and satellite borne antennas as probes to determine
the ambient electrical properties of the ionosphere. The perturbing effect
of the ionospheric plasma on the reactance of an electrically short antenna
was reported on as early as 1952 by Jackson. A method was subsequently
developed (Jackson and Kane, 1959, 1960; Kane et al 1962) that used a
Q-meter type of observation for determining the electron density. Whale
(1963) concluded that the resistive impedance component of the electrically
short antenna in the ionosphere was also modified, due to radiating electron
pressure waves as well as the usual electromagnetic (EM) wave, although
his results must be viewed with some skeptism since he ignored electron
collisions, which although infrequent in the ionosphere, may produce results
which are by no means negligible, as will be shown below.

Further experimental probing of the ionosphere using radio
frequency techniques has subsequently been reported on by Heikkila (1965a,
1965b), Heikkila et al (1966), Bramley (1965), MacKenzie and Sayers (1966
Stone, et al (1966a, 1966b) to men‘i‘ion only a few. The details of these
various experiments differ. But they generally have in common an attempt
to measure electron density from the change in reactance from free space
of an rf driven electrode (antenna) or electrode pair immersed in the plasma.

A new and novel suggestion for measuring plasma electron
densities was made by Takayama et al (1960). This scheme, called the

plasma resonance probe, involves observing the dc current to a Langmuir



probe while a low level rf voltage is simultaneously applied to the probe
and swept in frequency, the reported result being that a resonance in the dc
probe current was observed as the rf frequency passed through the electron
plasma {requency of the plasma outside the probe sheath. Further in-
vestigations carried out elsewhere conflicted with Takayama et al's results
in that the resonance frequency appeared to consistently lie below the
electron plasma frequency, being influenced by such factors as the sheath
size, probe size and probe potential. It has since been accepted that the
resonance does indeed lie below the electron plasma frequency; a discussion
of both the theoretical and experimental aspects of the resonance probe is
given by Harp and Crawford (1964).

A related area of investigation was begun by Field (1956) into
the modifying effects of a finite electron temperature upon EM wave propa-
gation in a plasma. He showed that the EM wave could couple to an electron
pressure wave, or electrokinetic (EK) wave in regions of plasma inhomo-
geneity, sharp plasma boundaries, or as a result of static magnetic fields.
Cohen (1962) later showed that the resistance of an electrically short cur-
rent filament in a compressible (warm) plasma would be dominated by the
effect of the finite temperature, with most of the energy being radiated in
the EK mode. Many further investigations into the influence of the EK wave
on the impedance of plasma immersed antennas have been carried out,
including Balmain (1965), Hessel, et al (1962), Ament et al (1964), Seshadri
(1965a, 1965b), Fejer (1964) and Wait (1964a, 1964b, 1965, 1966a). The
conclusion reached as a result of these studies is generally that the EK wave

may also be excited by a structure of finite dimension in the plasma (as




ilamentary current source of Cohen), but that the EK
effect may be much reduced by a sheath, and as a consequence of the finite
size of the antenna.

While the experimental evidence had not been at all conclusive
regarding the relatively large effect on antenna impedance due to the EK
wave predicted by such studies mentioned above, evidence of a different
nature had been obtained that indicated the possible excitation of the EK wave
by a plasma-immersed antenna. Resonance efferts were observed during
rocket tests of a topside sounder by Knecht et al (1961), the resonance
phenomena appearing as echoes extending from the turnoff time of the
sounder when the sounder frequency was equal to the electron plasma
frequency, or the square root of the electron plasma frequency squared plus
the electron cyclotron frequency squared (the upper hybrid frequency).
Similar effects were observed on a second rocket flight (Knecht and Russel,
1962) and with the Alouette topside sounder (Lockwood, 1963), with additional
resonances appearing at multiples of the electron gyrofrequency.

These resonances were explained by Calvert and Goe (1963)
as being due to electrostatic oscillations excited in the vicinity of the antenna
by the sounding pulse, with the energy partially fed back to the antenna when
the pulse was turned off. More rigorous analyses of this phenomena were
carried out by Fejer and Calvert (1964), Deering and Fejer (1965) and
Dougherty and Monoghan (1966), the latter two incorporating the kinetic
equations for the warm plasma rather than the fluid approach usually taken.
These studies show that the observed resonances can be accounted for

theoretically, and also predict some resonances not yet observed. The



resonances are studied by finding the singularities of the Fourier integrals
for the space-time variations of the field of an infinitesimal current source
dipole in the plasma. Deering and Fejer also obtained some expressions
for the actual fields near the source, as a function of space and time.

This property of the plasma to resonate at characteristic fre-
quencies after removing the excitation, has been called the relaxation
resonance by Heikkela (1965a), to differentiate it from the resonance associ-
ated with the resonance probe. It appears that the relaxation resonance holds
some promise for electron density measurements in the ionosphere, about
which we will say more later.

We see that with the greater opportunities to observe the be-
havior of plasma-immersed antennas that have become available with the
advent of rocket and satellite experimentation in the ionosphere, the picture
of the antenna-plasma coupling has become more and more complex. From
the earlier models where the plasma was characterized as a simple di-
electric, the plasma is now recognized as a much more complicated medium,
where it maybe unsafe to neglect any one aspect of the plasma properties
without risk of omitting essential features of the physics involved. We see
that in particular, the finite plasma temperature may produce gross variations
from the dielectric plasma model, leading to sheath effects, radiation in an
acoustical mode,and possibly enhancement of collisional effects because of
the much shorter EK wavelength compared with the EM wavelength.

It is apparent that the analytical problem of dealing with the
antenna immersed in a compressible, lossy, magnetoplasma is a very difficult

one. It is only in the past few years that the problem of the linear antenna




more than a wavelength or so in length in free space can be said to have
been numerically solved. And yet the same antenna when put into the
plasma medium, leads to a problem of much greater complexity. Unlike
the electrically short linear antenna in free-space, where both the dependence
on length and the propagation constant of the antenna current may be
reasonably approximated, this situation may not hold in the compressible
plasma medium, since the EK wave may alter the antenna current. In
addition, an electrically short antenna for EM waves may be very long for the
EK wave. Also in contrast to the free-space situation, where a current
filament may be used as a mathematical model of the real (thin) antenna, it
appears from the work of Seshadri (1965a, 1965b) and Wait (1966a), that the
finite transverse dimensions of the antenna and the presence of a sheath
decrease the effect of the EK wave on the antenna impedance. Thus any
results obtained from analyses using infinitesimal sources or assumed
current distributions and neglecting the sheath must be viewed with some
suspicion as giving undue importance to the effect of plasma compressibility.
There are two broadly different approaches one might consider
using to more realistically analyze the impedance of the antenna in a warm
magneto-plasma. One method would be an extension of that developed by
Hallen (1930, 1938, 1939), King et al (1961) and others with an emphasis on
the antenna current, which involves developing an integral equation (s) for
the antenna current. The problem involves solving the integral equation, by
no means an easy task, since for the compressible'plasma, one obtains two
coupled integral equations which lead to the current (Cohen, 1962). The

other method involves formulating the problem as a boundary value problem,



with the emphasis on the antenna fields, where an integral equation may
arise involving the electric field in the antenna "aperture' (e.g., the
cylindrical surface extending to infinity from the ends of a finite cylindrical
antenna) or the electric field across the slot exciting the antenna. If the
slot is thin compared with the wavelengths involved, then a good approxi-
mation in the later case is to assume a constant electric field across the
slot, in which case the formal solution for the antenna current is obtained
as a Fourier integral (or series). The former approach to antenna theory is
essentially a circuit theory approach and the later a field theory approach
(Schelkenoff, 1952). In either case, solving for the antenna impedance
requires a ''near field'" solution, a generally much more difficult procedure
than finding only the antenna radiation resistance, where only the far fields
are required.

The method which is most appropriate to a given problem depends
partly on the goemetry involved; in a case such as the infinite cylindrical
antenna, there is no inherent difference between the two approaches, the
formal results being identical. If the geometry of the antenna is such that
its surface may be represented by a single coordinate in a particular co-
ordinate system, then the boundary value approach is the natural one to use.
On the other hand, the finite linear cylindrical antenna has been historically
treated by the antenna-current integral equation approach, although Einarson
(1966) has formulated this problem using the boundary value approach also.

Unfortunately however, if one desires to treat an antenna of finite
size in a compressible plasma, and even then neglecting the static magnetic
field, only in the case of spherical goemetry is the problem really tractable.
As pointed out above, a pair of coupled integral equations result from the

finite cylindrical antenna. The prolate spheroidal goemetry, an attractive




cne for representin ite, nearl " idrical antenna with a single co-
ordinate surface suffers from great computational difficulty if the plasma
is lossy, (Wait, 1966b) and in addition shares with the biconical antenna
analyzed by Schelkenoff (1952) the disadvantage of requiring the inversion
of an infinite matrix for the solution. If the static magnetic field is added
to the problem, then even the spherical geometry becomes impractical,
However, the infinite cylindrical antenna can in principle be analyzed in
this case, if the magnetic field is parallel to the cylinder axis. We thus
choose to approach the investigation of the plasma-immersed antenna by
treating the infinite cylindrical antenna, since it appears to offer the best
possibility at present for making the fewest restrictive assumptions and
including a maximum of the physical aspects of interest, while still being
a practically solvable problem.

Our primary interest in this problem is in connection with the
use of a linear dipole antenna, operated in a swept frequency mode in the
ionosphere, for the purpose of exciting and detecting the relaxation resonance
at the electron plasma frequency, to thus determine the ambient ionospheric
electron density. The ultimate goal of our investigation would be to find the
antenna current as a function of time so that the explicit effect of the re-
laxation resonance could be seen. This would require finding the antenna
frequency response over a wide frequency range with a subsequent Fourier
inversion from the frequency to the time domain. This is a very difficult
computational problem, since even finding the impedance of the antenna at
a single frequency is, as will be seen below, very involved. Consequently,

we content ourselves in the present report to investigating only the frequency,

and not the time, behavior, of the infinite antenna.



An analysis of the infinite cylindrical antenna is admittedly
not as satisfying nor informative as a study of the finite antenna would be,
but it appears to be definitely worthwhile pursuing, for the reasons men-
tioned above, and considering the intended application of the investigation.
While the analysis cannot give, for example, absolute values for the im-
pedance of the finite antenna, it can show the relative changes brought
about by the various influencing factors such as plasma temperature,
collision frequency, sheath parameters, etc. which may be expected to
exhibit some of the same characteristics for the infinite antenna as for
the finite antenna. Some care must be exercised here, since the free-space
impedances of the infinite cylindrical antenna and the electrically short
antenna, which must be taken into account if a reasonable comparison of
the plasma perturbation on the impedance is to be made, may be consider-
ably different; this will be discussed further below in presenting the results.

While the antenna is infinite, the source, which will be taken to
be a circumferential slot of finite thickness with a specified voltage, is the
same as used for the finite antenna. Thus the main difference between the
two is that there are reflected waves on the finite antenna, which lead to re-
sonance conditions with changing length that are not present on the infinite
antenna, as well as to the impedance variation mentioned above.

The formulation of the problem is given in the next section, and
is restricted for this report to the case of the compressible, lossy plasma,
but without a static magnetic field, Section III contains a discussion of the
numerical analysis used to obtain the numerical results which are given in

section IV. The RMKS system of units will be used unless otherwise specified.




II Formulation

Our description of the field behavior in the plasma proceeds from

the time-dependent hydrodynamic equations for the electrons (ion motion

is neglected) together with Maxwell's equations, as

(%t +V(r, - )V(r, 0= LE@, ©)-)Viz, 1) (1)
N, ¥ oY(E, DR, U

(S V(e -7 IN, 24N (z, 0T V(r, =0 (2)

Nz, 0T YT "D t=const (3)

P(r, t)=kN(r, t)T(r, t) (4)

VHE(r, 0=-u (ZH, 0 (5)

TxH(r, 1)- €o§;t§(g, £)-gN(r, DV(r, 1 (6)

where E and H are the total electric and magnetic fields, V, N, P, and T

are the macroscopic electron velocity, number density, pressure and
temperature, -q and m are the electron charge and mass, ]/ is the electron
collision frequency, 7 the ratio of specific heats for the electron gas, r
and t are the space and time coordinates, €o and M o are the permittivity
and permeability of free space and k is Boltzmann's constant. Equation (1)
is the momentum transport equation, (2) is the mass transport equation,
(3) is the energy transport equation for adiabatic heat flow, (4) is the ideal
gas equation of state and (5) and (6) are Maxwell's equations.

The usual method of dealing with Eqgs. (1) - (6) is to linearize them,
-introducing time varying or dynamic perturbation quantities small in

comparison with the non-time varying or static quantities. Since the resulting



boundary value problem will be dependent on the model used to account

for the ion sheath, the two sheath models to be used in the analysis will
be treated separately. In the vacuum sheath model, the actual sheath is
replaced by a frespace layer, while in the inhomogeneous sheath model,
the actual sheath inhomogeneity is included in the analysis. In either case,
the sheath is assumed of finite thickness and of radius p =s, forming a
concentric layer between the antenna surface of radius p =c¢, whose axis
is coincident with the z-axis of the cylindrical (p, ¢, z) coordinate system,
and the external uniform plasma. The antenna is assumed to be excited
by a circumferential slot of finite width (S centered at 2=0, across which
voltage VO is applied which is independent of azimuthal coordinate ¢ .

As a result, there is no field variation in the ¢ direction and only an axial
antenna current is excited. The present analysis is also to be restricted

to the case of no static magnetic field.

II1 1. The Vacuum Sheath,

A vacuum sheath has been used by Seshadri (1965b) and Wait (1966a)
in connection with an antenna in a compressible plasma. In both cases, the
analyses are restricted to a lossless plasma with the excitation frequency
exceeding the electron plasma frequency. Larson (1966) recently studied
the spherical dipole antenna, comparing the results for antenna admittance
for both the vacuum and inhomogeneous sheath models, again for a lossless
plasma with the excitation frequency above the electron plasma frequency.
His results indicate that the vacuum sheath tends to exaggerate the influence

of the EK wave compared with the more realistic inhomogeneous sheath.
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These findings are substantially in agreement with those of Miller and

Olte (1966a, 1966b), for the scattering of EM and EK waves from a plasma-
immersed cylinder, where it was found that for EK wave incidence, the
vacuum sheath model led to surface currents and scattering cross-sections
approximately the same as those obtained from an inhomogeneous sheath
about twice as thick. It appears then that the vacuum sheath model may be
a reasonable first approximation of the actual inhomogeneous sheath, if its
limitations are kept in mind.

Equations (1) - (6) are linearized by introducing the following

variables,
E(r, t)=e(r, t) (7a)
H(r, t)=h(r, t) (7D)
V(r, t)=v(r, t) (7c)
N(r, t)=N+n(r, t); Inj<< N (7d)
P(r, t)=P+p(r, t); Ip|<< P (7e)
T(r, )=T+T(r, t); |Ti==T (71)

since in the uniform plasma there is no static component of electric field or

electron velocity. With the introduction of (7) into (1) - (6), we obtain

vxe(r, t)=-uo§tb_(£, t) (8)
vxh(r, t)= €o€-)_t e(r, t)-qNv(r, t) (9)

o) - _JKT
bny v(r, t)= -r% e(r, t)- Yv(r, t) rzn/—an(g, t)  (10)

g%cn(g, t)=N V-v(r, t)=0 (11)
We will assign a value of 3 to 7, corresponding to adiabatic, one dimensional

compression (Cohen 1962), so that Eq. (10) becomes

\%
o, (r,t)= Je(r, t)-Yv(r, ) - Vnlr, ) (102)

ot~

where we have used 3kT=mvi with v, the rms electron velocity.

If we Fourier analyze the variables appearing in (8) - (11) by using

11



the Fourier transform pair

™
e(r, t):%;n f el te(r w)dw
-0
@
6_’(3, w)= f 1wte(r t)dt
-
then we get
7x8(r, w)=-iou_h(r, @) (12)
Vxhir, w)=ie € Elr, ) -aNJ(r, @) (13)
v
(iwt U)’XV(L w)=—r%§(_r_‘, w) - %Vﬁ(ﬁ, w) (14)
iw’r\f(z, wH+ N V-S;_(L w)=0 (15)

We may now follow the usual technique for the spatially uniform plasma,
by breaking the fields up into the EM and EK modes, with components
denoted respectively by E and P, as

Vxe =V e
with the well known result that

(V2+K2)h=0 (16)

(\72+K%,)’n“=0 (17)

where
2
KE KE €
P PoeP
U
(1-iV)

€E=1v—

€51 _U%-iv

U= =f /f
oop/w p/

V= Y]w= Y/ 2nf

12




KEozw/‘Q

KPozw/Vr
with fp the electron plasma frequency, and 2 the free space propagation
velocity of light. Since there is no azimuthal variation of the source or
plasma and antenna structure, only the transverse magnetic (TM) (HZ=0)
EM mode will be excited, along with the EK mode. The TM and EK field

components are derivable from their corresponding scalar potentials (Z);II;

and ésg as

£k 9w
~ < TT
gp_vgbp

where now m and p are the subscripts used to denote the TM and EK mode
field components and the T indicates the wave transmitted in the uniform
~t ~

. T T . .
plasma. The potentials (me and ¢>p satisfy Eqgs. (16) and (17) respectively,
in terms of cylindrical Bessel functions involving the radial variable p,
and an exponential z-direction variation with an exponent i3 , @ being the
z-direction separation constant. Similarly, the EM fields in the vacuum

o~ o~
sheath can be found from the potentials @I and @R which are solutions to
m m

(16) with wp=0. , where the I and R denote the wave incident on the vacuum
sheath-uniform plasma interface from the antenna, and that reflected back
to the antenna from the sheath plasma interface.

A further Fourier analysis over B is required. since the source

excites a continuous B8 spectrum of waves. We thus define the transform

pair w
~ : ~
e(r, w)= 1 f elB z e(p, 8, w)dB
£ o S
-0
~ D A
elp,B, w)= f e P Zelr, w)dz
-0

13
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The spectral solutions @3; and @g can now be written

AT AT (2)
G _=a” H (Age) (18)
T, T (2)
(Z)p=Ap H (App) (19)
with Hf)z) the cylindrical Hankel function of the second kind and order zero,
and
2 _,2 ,2
- KE B
12 2 2

where the -root of Amust be used to obtain the proper field behavior at

infinity. In a simjlar fashion

SN (2)

Leal HH(ALe) (20)
TR_AR (1)

¢m_Am Ho (AEop) (21)

where
Ao Ko

The specification of the problem is completed by introducing the
boundary conditions to be satisfied by the fields at the sheath-plasma interface
and the cylinder surface from which the A_ coefficients are to be obtained,
These are continuity of the tangential magnetic and electric fields at the
sheath-plasma interface, as well as the vanishing of the normal electron
velocity there, thus assuming the sheath-plasma interface to elastically
reflect the incident electrons. The latter boundary condition has received
considerable criticism; it is an over simplification, but seems to be an

approximation consistent with that of representing the actual sheath by the

1k




further detail.
A last boundary condition is that the z-component (note that there
is no @ -component of electric field) of the electric field vanish everywhere

on the cylinder except at the slot, where it equals the excitation field,

—ez(c,z, t)=Vo(t)/6; lz|= 6/2

=0 l2|=0/2 (22)

where c is the cylinder radius. We would like to solve the problem Vo(t)
swept in frequency. This would require finding the antenna current as a
function of frequency in order to perform the transform with respect to
frequency. Thus for the present, with no loss of generality, we assume

V ()= ™t ant

o o

so that

V (@)=V_Ole-w) 2
where 6(w—w') is the delta function. The question of the antenna response
to a source of finite time duration, and thus having a spectrum of frequencies
will not be considered further in this report. We thus obtain the response

of the antenna to the single excitation frequency w=2nf, and

—ez(c,B,w)=VOCS(‘*’°‘*") E(%%%g@ 2v(23)

is obtained. The boundary conditions may then be written in spectral

form as
r— — I -~ —
al S(8 )
A | Am]| ©
m
= (24)
AT o)
m
L ] AT_.d o _
P

15



where

—

2 2

Eo .. (2) Eo
— H (l c); H ("L C);O;O
KEo e} Eo KEo o

. Ago H(? /\Eo (V) | ’\E (2)!
[AJ RS (Ag, B Ag, i o (Ag9):0

’L]?So (2) A‘EO 1) k 2) (2)
'KEHO (/\EO H( ()‘EO)-—I_I( (,{ s)-i8H (/1 s)
O
/LEB (2) 1’KP (2
O )'
0i0; g (Apsha=eoH oo (Aps)
p—
S o sin(BCS/2) (25)
s(g)= - v 2r Olw-e" (26)
e :wuo
TZ KE ’Tlo KEO

and ¢ and s are the antenna and sheath radii and the prime indicates
differentiation with respect to argument. A solution for the various

coefficients A_ is straightforward, with the result

T +i4AE A]2530 ,8 S@

) (2)
p "SKgKg 7, D H (Ags) (27)

2
m -rr(l €E SKEoT(o

A ,
EogD g ou? (A e

7ZKEO °

Ag 2
(@) (2)" (2) (2)" (2)"
(AgoHY (kEos>) —%;KEHO (ApoE DA LaE 2y ol (20)

TZOEO

O

LI _D@[ft H2'0s)

16




Kg
Al <20 5(5)- H(l)(,LEOc)Am (30)
L) ( EOC)

“Eo
where
3 F ’
P! Ao A
Eo”“E | W(c s") ["PNE (2) (2)
D=-i (/k S)H (/1 s)
1KEO LT? Kg (1-€p) H,

p2u!? (2)! Ap gl (2)! (2)!
(Ap9H > (A gs) Rty Wl ot ApoHH (Ags)| (31)

€r

The Wronskian relations W(c, s) and W(c, s') are

wie, )=V P o-81 AL 95 o (322)
wie, sH=H P L a1V 9a@ X, o (32)

The field quantities of interest are then obtained from their
respective inverse Fourier transforms. In particular, the antenna current

is obtained from

I(z, t)=2nch,. (c, z, t) (33)
L
- < f 'R (c,8, d)apdw
-0
o ® itt+) Mo H' O oal +5 'O oAl agad
2w f © T o Eo““m "o ‘“Eo%m
-0

This can be simplified somewhat to give

joo i(w’t+BZ) imcKp

i
2 0= 2 (ZX/LEOC) 4lEo

o
\O)

(2) (A )S(B)- AR} dBdew !

(34)
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/ - . . . . .
The w integration is readily performed, since the source is monochromatic,

to give it . -
+V _4de iz imcK . - —
Uz, t)= —2 f —(—)—e Eo {2)'( ys(3)~ AR |d
TTT(o - H02 (/\_Eoc) 4IE0 °© AEOC B fm 4
=Lz, w)e ! (35)
where

‘S‘(B): sirg(% 62/2)

and Z};{n is given by Eq. (29) with S(@) replaced by S(8). It is interesting to
note that the first part of the integral in Eq. (35) is the free-space antenna

current, which if we denote by Io(z, w), we can write

+V © (2)'(,{ &)=
I (z,w)= © ¢cK f eIBZ Eo S(B) (36)
© To EO_ (2)(/1 o%) AEO >
and Iz, w)-1I (z w)=AI(z, w) R (37)
with Az, w)- a)fm dB (38)
(25 )

so that Al(z,w) gives the change in antenna current as a result of the plasma.
We note that KEI -0 in the limit U-=0 and AI(z, w) becomes zero as required,
if the plasma is removed.

The numerical evaluation of Io(z, w) has received considerable
attention in the literature; attempts have also been made to obtain asymptotic
expressions for the integral. It is easily shown that the real part of Io(z, w),

which we denote Ior’ has an integrable singularity at B=KEO(Duncan, 1962)
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but that the imaginary part, Ioi’ contains non-integrable singularities of
opposite sign on either side of B=KEO. Further, the contribution to Ior- comes
entirely from the interval 0 to KEo' The presence of these singularities,
particularly in Ioi’ makes the numerical evaluation of IO difficult, but not
impossible; this is discussed in the next section.

It is also evident that the Al(z, w) integral has the same types of
singularities as associated with Io' This is shown quite readily from the small
argument forms for the Hankel function; the details are shown in Appendix A.

It is possible however to give an expression for I(z, w) which does not have these
non-integrable singularities. We do this by giving an alternative expression for
AL which is Ao N

T !
Al s, SO P et 12O s nKEO VL oE D (Ags)
Ag

| o2
(1)’ (2) 82 2 (1) (2)"
7Kg o (AgoSH, (AEs))Jr-—K H A (ApoH " Ug 9H ¥ Ugs)| (30a)

o E

If we insert this expression into Eq. (33) along with (29) for Arl:; and

integrate over w, we obtain

0]

+icV . \
I(z, w)= 7 = [ e1h? §(/3)%A%od3
(0]

-Q0
(0 0]

= f I(B, w)cos(Bz)sin(B 5/2)dﬁ (39)
0

where

/\
O

AP)L
(2)(1 (2)! Eo W(c!, s) (2) (2)

+B°H $H > A Aps)H s) /1 (40a)
g’ 6 Kg. 1 Ags)| /
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. 2
18, w)=2T) 2 L

S EO™ (40b)
and
wie', 5)=H'V ()LEOC)HEDZ)(AEOS)-Hgl)(AEos)H(oz)'(lEoc) (32¢)
Wic', s')=H§)1)'()EOc)Hf)2)'(lEOs)-H(ol)'()LEos)HgZ)'(lEoc) (32d)

It may be verified (as shown in Appendix A) that (39) contains no non-integrable
singularities as long as the electron collision frequency is non-zero. In the
event that }/=0, singularities determined by KE’ KP and s-c do occur. These
singularities are discussed by Seshadri (1965b). Consequently, the introduction
of electron collisions in the formulation makes the problem numerically more
tractable as well as physically more realistic.

We can finally obtain the antenna admittance Y by finding the
current at z= 6/2, and forming the ratio”

10 /2,0
A\

O

= Y(w)=G(w)+j B(w) (41)

This is the quantity of most interest to us in this investigation, and for which
we will present the most extensive numerical results. During the evaluation

of the integral for Y(w), we can also evaluate the other Fourier coefficients
(27) and (28) from which the field quantities of interest may be obtained by
inverting the corresponding Fourier integrals. We could for example, examine
the power flow in the plasma in the EM and EK waves as a function of p and z.
Information of this type should provide some idea of the primary interaction
volume of the antenna with the plasma, from which we may deduce the effective

antenna sampling volume in relation to the antenna's use as a probe to determine

* Note that B(w) is finite only for non-zero 6
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the ambient plasma properties. It is also of interest to find the antenna current
as a function of z, particularly since a decreasing current magnitude with
increasing z may give an order of magnitude indication of the length of a finite
antenna beyond which its impedance may differ negligibly from that of the
infinite antenna. This is because the importance of current reflections from
the end of the finite antenna becomes less with decreasing current magnitude.
Since our primary interest in the present report is the antenna admittance, we
will defer a detailed study of the antenna near fields to a subsequent report,
wherethis question, along with the relaxation resonance problem, will be
considered. Since the numerical technique of inverting the nearly singular
Fourier integrals which occur in this formulation is of great importance if

the analysis is to be carried further, section III of this report will briefly

describe the procedure used,
. 2 The Inhomogeneous Sheath

The same set of linearized equations is used to obtain the fields
in the uniform plasma for the inhomogeneous sheath model as for the
vacuum sheath model i.e., Eqns. (1) - (6). For the sheath itself however,
the linearized set of variables given by (7) contains in addition a static com-
ponent of electron velocity and electric field. In the present study, where
we take the antenna to be at floating potential, it may be shown to be a
reasonable approximation to neglect the static electron velocity (see Miller,
1966), which is what we do here, so that (7) is the same except for (7a)
which becomes

E (r,t)=E(r) +e(r,t); lel<=<E (7a)!

and N and P are now functions of r.
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The linearized equations (8) - (11) are unchanged except for (10a)

which is now

—a——v(r' t)=- 9~(e(r t)+E(r)£}ﬂ_;_)_ )
2
Vr
_U\y_(_l;, t) Ry V0L, 1) (10a)"

After the Fourier transformation is applied, Eq. (10a)' becomes

(1<.o+2/)v(r w)———(e(r w)+%(=)r n(r, ) ) (14a)!

.2
r r~
N(7) vn(r, w)
with the other equations as given by (12), (13) and (15).
The presence of the term containing E(r)/N(r) in (14a)' prevents
us from decomposing the total electric field into EM and EK components as

for the uniform plasma. This is most readily seen by writing an expression

~s
for e(r, w) as

~s 1 ~ ~ ~

e(r, w)=: ¥ xh(r, w) (r, ©)+L(r)plr, w) (42)
=4 lm€o€E b WP p

where
Qv n(r w)
p(r w)= 1@31 iv)
L(r)—— E(r)
mvr

~J, ~s ~
We see thathE(g_, w) and V+e(r, w) will contain terms in both h(r, « and p(r, ),
in contrast to the uniform plasma case where L(r)=0, with the result that

the magnetic field and dynamic electron density are coupled. Two coupled
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wave equations similar to (18} and (17) may be obtained as

\V/ 2+K%)E+EXV xE=v§x(g+£,) (43)
(VK2 P+ VHLE) P+ (LP+VD)=P-v xi (44)
where
V€L

If the plasma is uniform, then P=L=0 and (43) and (44) reduce to (16) and
(17). The inhomogeneous sheath is specified for our purposes, by the static

potential variation in the sheath. We take the static potential @o to vary as

= S-
¢o_ CZSc [s—c (452)
where ¢C is the cylinder potential, and M is an adjustable parameter. We

obtain ¢c from a form due to Self (1963) as
m.

_ -kT i 1
¢c_ e log, ™ I (45b)
where m, is the ion mass. The staticelectric field is then obtained as

E(r)= -
E(r):= -V
while N(r) is given by

N(z):Nooexp[ ed)o/kT]

with NOo the electron density in the uniform plasma. A more complete

discussion of the applicability of this description for the static sheath is
given by Miller (19686).

The first order differential equations corresponding to (43) and (44)
are more convenient to use in the numerical solution which is required, and

are, after a Fourier transform with respect to z,
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AN ~ i~
b =(iw€ €x)e +igh, -Lp
7~ b4 ~
htp %‘}”-i-(ioé' € )ez—lﬁp
4 ~ €
R LR Tp L ie(l1£iV) ®
% IBez 0 * € V2 b
or

! =~

= +i
e, lwo}}p iBe

where the ' denotes differentiation with respect to p.

As for the vacuum sheath model, the fields in the uniform plasma
are derivable from scalar potentials involving unknown Fourier constants
to be determined from the boundary conditions. The total number of integration
constants to be determined is 6; 4 for the sheath fields and 2 for the trans-
mitted fields in the uniform plasma. The boundary conditions which are
used here are continuity of the tangential electric and magnetic fields, the
normal fluid velocity and the dynamic electron number density at the sheath-
uniform plasma interface (p=s). At the antenna surface (p=c), we require the
z-component of the electric field to be zero everywhere except at the slot,
where it equals the excitation field as before, and we use an admittance
relation between the normal electron velocity and dynamic electron number
density (see Cohen, 1962), given by

p-v=Ygn (50)

The boundary condition equations can be written then, after eliminating

the Fourier coefficients of the transmitted fields in the uniform plasma, as:

=~ ~
p =c: iwe e +1Bh = MNY BP (51a)

s 6/2> Slw-w') 27 (51D)

“’22
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~t ) ~\ A
_ ~, nq’ 9 B \AgS) & B
P =s: h‘P+E——+A'E —(-gy(;k— hq)—O (52a)
I_Io ES)
~y H(OZ)M S) o~

The surface current on the antenna is found from
Iz(z, t)=217chp(c, z,t)

(e 0]

oot j’ eith;(C,B,w)dB

-1 (2, 0)e'! (53)
where

=~

h(p(c’ B w)=2x 6((.0 --co')F(p (c, B,w )
for a monochromatic source of frequency w .

While the solution for the antenna admittance follows formally for

the inhomogeneous sheath in the same manner as for the vacuum sheath,
there is one important difference. The integrand function for the vacuum
sheath is straightforward to evaluate, involving an analytic expression
containing functions which are readily (and rapidly) calculated. For the
inhomogeneous sheath however, evaluation of the integrand function requires
the numerical solution of 4 coupled, complex, first order differential
equations across the sheath region, a process which by comparison, is
much more time consuming than for the vacuum sheath. In addition the
numerical solution of a boundary value problem when the boundary conditions
are expressed at two boundaries such as we have here, is straightforward,
but more time consuming than for the initial value problem, where the bound-

ary conditions are all given at the same location. This is an additional factor

to consider in obtaining a solution for the inhomogeneous sheath problem.
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Consequently, while a solution should be obtainable in principle, the
practical aspect of the expense involved may deter us from obtaining
numerical results. The inhomogeneous sheath analysis is included here
for the sake of completeness, but no calculations pertaining to the

inhomogeneous sheath are included in this report.
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III. Numerical Analysis

There are many standard methods for the numerical evaluation
of definite integrals, which fall in the category known as numerical quadra-
ture. Numerical quadrature is the process of approximating an integrand
piecewise by polynomials and integrating these exactly., One example of a
quadrature scheme is Gaussian quadrature, of which there are many types,
depending on the weight function which may be factored from the integrand
function. A characteristic of Gaussian quadrature is that the abscissa points
are typically determined by the zeroes of some type of polynomial, and as
a result are not equally spaced. This is a great disadvantage in integrating
functions which are complicated, and consequently time consuming to eval-~
uate, as in our case, since in any iteration procedure or change of interval
size to improve the accuracy, it is desirable to utilize previously calculated
integrand values.

A different class of quadrature formulas based on equally spaced
abscissa points, is the Newton-Cotes method, special cases of which are the
well-known Trapezoidal rule for the order 1 and Simpson's rule (also called
the parabolic rule) for the order 2. A particularly useful method for applying
the Trapezoidal rule, called Romberg integration, employs Richardson's
deferred approach to the limit (Ralston, 1965, p. 118). This is a technique
whereby two approximate results are combined in a certain way to get a
third and hopefully better result. The technique is used in Romberg's
integration by calculating two values, using the Trapezoidal rule, for an
integral over a fixed interval, the second value being obtained using twice

the number of subintervals as employed for the first. Following Ralston,
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we denote these quantities by TOk where

_b-a
TOk— —z-k— (0.5 f0+f1+f2+ . +f2k_1+0. 5 ka) (54)
and the integral whose value we desire is
b
J=Jf (x)dx
k
fn=f(a+nh);n=0, 1,...,2
he b-a
2k
We see that the quantities T0 1 k=0, 1,. . .are successive Trapezoidal

approximations to J.

We then define, using Richardson's deferred approach to the limit,

-1 k=
Ty g®T »k=0,1,. . . (55a)

0, k+1 o, k
which upon using (54) can be shown to reduce to Simpson's rule. This can

be made more general by writing

1 m
e ¢ Tmen ke Tmo (55b)

Tm, K

m=1, 2,

k=0, 1,
The approximation T2, K is the composite Newton-Cotes rule of order 4
with Zk subintervals, but for m=2 there is no direct relation between Tm, I

and a Newton-Cotes composite rule (Ralston, 1965). The Romberg integration

answer is given by Tm 0

2

28




The utility of the Romberg integration scheme may be seen by
observing that Simpson's rule is a generally more accurate integration
technique than the Trapezoidal rule, for the same number of abscissa points.
Ralston presents an example, the integration of f d x/x, for which Simpson's
rule gives 7 place accuracy (1 unit off in the seventh significant figure) with
33 abscissa points, whereas the Trapezoidal rule gives only 6 place accuracy
(2 units off in the sixth figure) with 129 absicssa points. Romberg integration
on the other hand, gives 7 place accuracy with only 17 abscissa points, from
T4, 0

Along with its generally greater accuracy, Romberg integration has
another very attractive advantage in that the convergence of the successively

calculated T values provides a built-in testing procedure for estimating

m, 0

the error arising in each integration interval (a, b). In practice, it is con-

venient to arrange the Tm K in a triangular array, as follows:

To. 0

To. 1 1,0

To.2 Ti1 Tao

Tom T1,m-1 . . . T
m, 0

The first column thus gives the Trapezoidal rule answers, while the second
gives answers obtained from Simpson's rule, and the diagonal gives the

Romberg answers. Convergence towards the correct result occurs along
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the diagonal and down the left hand column. In addition, the answers con-
verge towards Tm 0 along each row, and generally the row convergence

gives an earlier indication of convergence to a desired accuracy than does

the diagonal. The T-array for the example mentioned above is (Ralston,

1965, p. 125)

m TO, m

0 1.333333

1 1.166667 1.111111

2 1.116667 1.10000 1.099259

3 1.103211 1.098726 1.098641 1.098631

4 1.099768 1.098620 1.098613 1.098613 1.098613

5 1. 098902 1.098613 1.098613 1.098613 1.098613 1.098613
6 1.098685 1.098613 1.098613

7 1.098630 1.098612 1.098612

The answer, correct to 7 figures is 1.098612.
The superiority of the Romberg method is very evident in this example.
Care must be taken in its application however, as the Tm, o Mmay oscillate
widely about the correct answer and actually require more abscissa points
than the TO, m values to obtain a desired accuracy, for functions having a
sharp maxima (or minima) in the interval (2, b). In this case then, the row
convergence can not be relied upon to indicate the accuracy of a given Tm o

t

An additional drawback in this situation is that, since the abscissa points are
evenly distributed within the interval (a, b), many more points are obtain-

ed outside the maxima (minima) than required in order to get the nec-

essary abscissa spacing with the maxima (minima). Thus, the Romberg

method is very powerful in the integration of monotonically varying functions,
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but has some limi
integration interval is wider than the peak. In the following, the appli-
cation of the Romberg integration scheme to our specific problem is briefly
discussed.

It should be noted that while the Romberg answer Tm, o can be

obtained by generating the T-array discussed above, an answer can also

be obtained in the more usual way, as

2m+k
/
T Z djmf(a+jh) (56)
j=0
where
_b-a
h_zmik

The djrn weights are obtained as (Bauer, et al., 1963),

+4c_ +...+2Pc (57a)

2¢ m2 mp

= +
djm “mo ml

with p the highest power of 2 by which j is exactly divisible (i.e., for j odd,

p=0) and
o 0=1 . (57b)
(-1 k0

S 2 T ; k=1,1,...m (57c)

mX 9.15-637+(4°-1)
m

Cm,Ozl_ Z ij (574d)
i=1

The prime on Z in (56) indicates the end points are to be taken with

one half the weight.
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Obviously, the abscissa points to be used are required before the appli-
cation of (56). The utility of this expression for the integral comes in the
situation of interest in this report, where the values of several integrals
may be desired. If the integrals have similar variation with the integration
variable, then the convergence test, with its attendant time and storage
requirements, can be performed for one of the integrals,the others being
obtained from (56).

The problem facing us is that of evaluating an integral over the
range 0 to . We obviously can not carry out the integration numerically
over this range, and consequently seek to determine some finite upper limit
beyond which the truncation error arising from the neglected portion of the
integral is smaller than an acceptable relative truncation error, ET. We
mention again, as was earlier pointed out, that the integral (39) is convergent

only if the feeding gap thickness (5 is non-zero. In order to establish the

truncation error, we write the current, following (39), as

I(z, @)=, +1 g (58a)
where B
1,- 1(B, w)cosB z)sin(8 Y 2)8 (58D)
O
- 1(B, w)cos@z)sin(8 O/2)ddB (58¢)

and we seek to find a value for B where the truncation error, due to neglecting
the contribution of IBto I(z, w), is less than ET. It may be shown that as
B -0, 18, <.o)—>B_2 from the large argument expressions for the Hankel

functions, We can then write
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1 gB2I(B, ©) cos(rBz)zsin(B 6/2)dB (59)

B
B
with
I(B, «)=L(B, )
B=B
now @,
lIBl <|B2 I(B, “)I cos(B z)sin(ZB (5/2)d l (60)
B B
o0
<B® |UB,v)] f LS
B B
=B |I(B, v)|
Since we want IB
| S$Eq
A
we get
B |I(B, w)|
—IIA—I— < ET (60

The integration of (39) was terminated wherever (60) was satisfied, with B
equal to the current value of B.

Still required is a means of choosing the optimum interval size for
applying the Romberg integration. Obviously, the optimum interval size
is the one which yields the highest accuracy with the fewest abscissa points.
Since the near-singularities of the function being integrated are not a priori
known in either location or width, the only reliable way focr choosing the
interval size is to have this done by the computer in the course of the cal-

culations. The manner by which this was accomplished is briefly as follows.
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The integration is begun at 8 =0, with some initial specified interval
width W, (a1=0, b1=a1+w1). The integrand is evaluated, successively, at
1 » and the first entry in the T array for that interval is

calculated. A third absicssa point, at 8 =a1+w1/2, is then calculated, so

B =a; and f=a, +w

that the second row of the T-array may be obtained. A convergence test

is then performed, which requires that
(T 0T /Ty o] SEg (61a)

where EC is maximum acceptable convergence error. The failure of this
test leads to two new abscissa points, atf =a1+W1/4 and B =a1+3wl/4 and
the generation of the third row of the T-array. The convergence test then

requires that

(T2’ O—Tl’ 1)/T2’ 0| < Ex (61Db)

Failure of this test could lead to still finer subdivisions of the (al, bl)

interval, until a convergence test of the form

(T T VT, o|<E

m,0 m-1,1 s C

is satisfied. It should be observed that we are employing a row convergence
test, rather than a diagonal test, since as mentioned above, it was found that
row convergence gave an earlier indication of acceptable accuracy than did
the diagonal.

As was mentioned previously, this procedure is generally not desirable,

since the bracketing of a sharp maxima by the interval (al, bl) results in an
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rg answer with slow convergence tu ihe correcti resuit,
as well as an excessive number of abscissa points, outside the maxima.
Instead, if convergence is not obtained from a maximum of 5 abscissa
points in the interval (i.e., mQ), the interval is divided in two, and a

T-array calculated for the first of these two new intervals, (al, a +w1/2),

1
from the 3 abscissa points already obtained. Failure of the convergence
test here leads to the calculation of 2 additional abscissa points for this
new interval (al, a; + W1/2). If convergence is still not obtained, two
‘new intervals are formed from (al, a; + W1/2), with this general procedure
being continued until the desired convergence is established. On the other
hand, if convergence had been obtained on (al, bl) with m<2, then the
interval width w2=2w1 is used for the next interval (a2, b2). We point out
that 5 abscissa points are allowed per interval, rather than only 3, since
the failure of convergence with 3 points would then require 5 points to be
obtained anyway if the interval is then halved, because 3 abscissa points are
required for each of the two new intervals to test the convergence.

We thus obtain a sequence of intervals of width such that the desired
convergence occurs on each interval with no less than 3 and no more than
5 abscissa points being used. Note that the end points of the intervals are
used twice, once for each adjacent interval. The convergence error, EC’
is adjusted during the calculations to keep the absolute error arising from
each interval below an acceptable level relative to the largest contribution
of the preceding intervals. The reason for this is to avoid unnecessary

calculations which do not increase the accuracy of the integration. For

example, if the contribution to the integration of interval i is Ci and the
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largest contribution of the preceding i-1 intervals is Ci—j at interval i-j,
and C, =107 C;_; with y >1, then ci+ci_jfs(1+1o"y)ci_j. Thus, if C; .
has a normalized accuracy no less than EC’ there is no need to know Ci
to a normalized accuracy better than 10Y EC' In essence, we attempt to
maintain the same absolute accuracy in each interval of the integration.
The advantage of doing this is shown in Appendix B.

In practice, the real and imaginary parts of the current were tested
separately for convergence. It was found that this computation scheme
consistently chose the smallest interval size at the location of maxima in
the integrand, which is the desired result. The ratio of the largest to the
smallest abscissa spacing was found to be as large as 106 to 107. An
interesting aspect of the method is that, in the region of largest contri-
bution to the integral, the contribution from the successive intervals were
generally on the same order of mangitude, which is desirable from the
error analysis. It should be noted that if the abscissa spacing becomes too
small relative to the current value of 8, it may be necessary to use double
precision calculations, if the change in 5 is smaller than the least signifi-
cant figure available in the computer.

When other quantities are desired in addition to the slot current,
the necessary integrand values f(ai+jh) may be stored, and the computation
performed using

F= i f. (62a)
1

i

/
f.=h Z d; pfla+ih) (62b)
j=0
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a), and a; is the initial abscissa
point for each i'th interval with N the total number of intervals. In order
to save time retrieving the quantities required, these were stored sequen-
tially as calculated, and an index number used to locate them in storage as
the summation (62) is performed. A copy of the program may be obtained

from the author.
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IV. Numerical Results
IV.1 Free Space Admittance

It has been shown previously, that the antenna current (and
admittance) can be expressed as the sum of two components, one being
that for the case where the antenna is located in free space, and the
other arising from the effect of the plasma. The relative change from
the free space value of the antenna admittance brought about by the plasma
is of interest, requiring a consideration of the free space admittance values.
Since the expression for the free space admittance contains non-integrable
singularities on the real f-axis the problem of numerically obtaining the
free-space admittance is not straight forward.

A number of papers have appeared rather recently on the free-
space admittance of the infinite cylindrical antenna. Duncan (1962) examined
the problem in some detail, outlining a computation scheme for obtaining
numerical admittance values which involves a series approximation to the

exact integral. He gives some admittance values for K=K oC ranging from

E
0.01 to 0. 15, but since he uses a delta function gap and performs an averaging
process in the vicinity of the gap, his susceptance values are of questionable
value, though the conductance values can be used since the conductance is
independent of the gap thickness.

Chen and Keller (1962) and Fante (1966) attempt to derive analytic
forms of the admittance by using approximate expressions for the Hankel
functions for various ranges of the 3-integration. Both of these papers

contain errors, those of Chen and Keller being pointed out by Fante,

while Fante's errors are shown by Miller (1967). These attempts

38




dm retern s [ |
LU gLV d CluUdTcUu

Lo
1

orm f{or the free space admittance are useful in
providing a rough approximation to the exact values and the influence
of the various parameters involved, but the results are not accurate
enough for our purpose.

Instead of approximating the integrand in order to obtain num-
erical free space admittance values as was done in the papers quoted,
we have chosen to deform the contour in integrating the exact expres-
sion for the current, given by (36). This is most easily done numeri-
cally, by integrating upward, along the positive imaginary B -axis, and
then proceeding at right angles parallel to the positive real B-axis, until
the truncation error is acceptably small. The coutour can be brought
downward to the real B -axis once the singularity at =K, has been
passed, but the contribution to the integral of this segment may be
neglected if the path parallel to the real axis is carried far enough to
obtain the small truncation error desirable, The contour wused for
obtaining the free space admittance is shown in Fig. 1.

We present in Fig. 2 the free space admittance for an antenna
1 cm in radius, and various gap thicknesses 6, as a function of frequency
between 300 KHz and 10 MHz. This antenna radius and frequency range
is chosen to correspond to the values expected to apply to a projected
experiment in the ionosphere.

We observe that the conductance and susceptance show a rather
slow increase with increasing frequency, and that the conductance exceeds
the susceptance over the entire range, Further, the susceptance is not

sensitive to changing gap thickness, for this frequency range, though
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as shown by Miller (1967), the susceptance dependence upon gap
thickness increases with increasing frequency. The results of Fig. 2
will be useful to see the perturbing effect of the plasma upon the antenna
admittance.
IV. 2 Admittance for the Vacuum Sheath Model

We present in Fig. 3 the antenna admittance as a function of
frequency, for an antenna of 1 cm radius, with (S = 1 mm, fp: 1.5 MHz,
Y = 10KHz, T= ISOOOK, and a vacuum sheath thickness X, of 5 electron
Debye lengths (DJL ). The plasma parameters are typical of what one
finds in the E to ¥ region of the ionosphere, and the sheath thickness
is a reasonable value for an object at floating potential in a plasma.,

For these parameters, Df, = 1.5998 cm, so that s-c= 7.9988 cm. We

note that the antenna diameter is on the same order as Dﬂ , which is a
situation where the sheath thickness is dependent on the ratio c/D,Q

(Laframbois, 1966), and is reduced in value relative to the case where
c >> Df,

The admittance curve of Fig. 3 exhibits a zero in the susceptance
near the plasma frequency, the calculated value changing from inductive
to capacitive between 1,5 and 1, 5125 MHz. The conductance on the other
hand, is seen to reach a definite minimum below the plasma frequency,
between 1,475 and 1.5 MHz. Both the conductance and susceptance ex-
hibit maxima below the plasma frequency, at about 0,75 MHz for the
conductance, with two maxima for the susceptance at about 0.75 MHz
and 1 MHz. The susceptance falls off exponentially with decreasing

frequency below the maxima. This resonance below the plasma frequency
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Fig. 3. The infinite antenna admittance as a function of frequency, for the warm
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is quite interesting, and will be discussed further below. If the collision
frequency were zero, the conductance from this theory would of course
be zero, below the plasma frequency of 1.5 MHz,

For the purposes of comparison, we show in Fig. 4a the admittance
of a finite dipole antenna of 1 cm radius and 10 feet (3,048 m) half length (h)
immersed in a uniform, cold plasma having the same electron density
and collision frequency as for the graph of Fig. 3, calculated from the
theory of King et. al (1961), Also shown is the free space antenna admit-

tance. Note that at 1 MHz, KEo h~6x 10_2, so that the antenna is
electrically short. In the discussion to follow it will be assumed that in
speaking of finite antennas, we will be dealing only with short antennas,
i.e., where KEo h € 0.1, so that Bo>> Go'

We see that while the susceptance is quantitatively similar to the
finite antenna result of Fig. 3 near the plasma frequency, the conductance
curves for the two antennas are not even qualitatively similar, varying
by several orders of magnitude. It is somewhat surprising to find that
the power absorbed by the finite antenna (which is numerically equal to
one-half the conductance) exhibits no singular behavior at the plasma
frequency, as is shown by the infinite antenna. We may possibly account
for this difference in behavior of the finite and infinite antenna near the
plasma frequency, in the following way.

We note first of all, that an infinite antenna in free space loses
power through the radiation field, (far-field) and surface waves. It is

of interest to note that it may be shown from Seshadri's (19650 results

for the far field radiation resistance calculations, and our results of
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Fig. 2, that for the antenna considered here, the surface wave con-
tribution to the antenna conductance exceeds that due to the radiation
field, for the free space situation, by a factor of about ten, at 1 MHz.

If the antenna is put into a lossy plasma, then collisional absorption,
which may be expected to be most important in the near field where the
fields are strongest, is an additional way for the antenna to lose power,
Now it may be concluded (as will be shown below) that collisional absorp-
tion, at least for the magnitude of collision frequency and plasma frequency
used here, is small in comparison with the power lost in the radiation
field and through surface waves, at 2 MHz. As the operating frequency is
decreased towards the plasma frequency, the medium impedance ef-
fectively increases, thus decreasing the power carried away by the
surface waves and radiation field, with a resulting decrease in antenna
conductance, as shown by Fig. 3. The conductance does not decrease

to zero of course, because of the near field collisional absorption which
becomes then the predominant loss mechanism at and below the plasma
frequency.

For the finite antenna in free space on the other hand, power is lost
only in the radiation field and the introduction of the lossy plasma medium
results in a substantial increase in the antenna conductance, for these same
plasma parameters, because of the resulting power loss in the near field due
to collisional absorption. The conclusion to be reached from this is that for
the short antenna, the near field absorption may be the predominant factor

in determining the conductance, near the plasma frequency. This may
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be qualitatively shown by writing the free space admittance as
= + 1
Y, G0 1B0 (63)

When the antenna is put into a lossy medium of relative permittivity €r’
then
YO—-Yx €r (Go + iBO) = iB0 €r (64a)

since GO<< Bo' Near the plasma frequency then,

G= B,V (64b)

4

and from Fig. 4a, B, (f=1.5 MHz) = 1.6x10 ® MHOS, so that

7 7

+ Bo V = 1.7x10 " MHOS, while the calculated value for G is 1.8x10" ' MHOS.
We may also deduce from (64b) that G:::w_z near the plasma frequency, a
result which agrees with the calculated values, and which also shows that

the conductance does not have a minimum near fp’ depending upon )/

and w alone.

As a further illustration of the near field influence on the finite antenna
conductance in the lossy plasma, we show the conductance only in Fig. 4b
for collision frequency values of 10, 102 and 103 Hz. The susceptance was
negligibly different from that shown for U/ = 104 Hz in Fig. 4a, and so is
not included. We see that as }/is decreased in value, the conductance decreases

proportionately except near fp where a minimum begins to appear at 102 Hz

and which is quite pronounced at 10 Hz. This minimum occurs now since
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for /= 10 Hz, B, V=G_, and the resulting minimizing effect of G, €r
is large enough to show up. Thus a minimum exists in the finite antenna
conductance, similar to that of the infinite antenna, but requiring a very
much lower electron collision frequency than is required in the case of
the infinite antenna. We may briefly note that physically, the finite
antenna behavior results from the reactive near field interacting with
the imaginary part of the plasma permittivity (which is determined by
electron collisions) to produce in-phase currents larger than those pro-
duced by the in-phase field, unless, as noted, the collision frequency is
very low.

We must remember in comparing these results that the finite
antenna theory is for the cold palsma while the infinite antenna results
are for the compressible plasma, and as such may not be meaningfully
related. Results will be given subsequently for the infinite antenna in
the cold plasma, so that the effect of the temperature may be shown,
and in that case a comparison of the two antennas may be more signifi-
cant. It is in addition of interest to compare the finite antenna results with
some actual antenna measurements in the ionosphere given by Heikkila
(1965a) which are given in Fig. 5. This data was obtained using a hemi-
spherical antenna 11.6 cm in diameter. A rather sharp maxima may be
seen in the admittance, below the plasma frequency, a feature not exhibited
by the calculated results of Fig. 4. It should be observed that the mag-
netic field may have an influence on the measured admittance values of

Fig. 5, but is not included in the theoretical calculations.
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The discussion presented above may be briefly summarized by
noting that generally, the conductance of the infinite antenna is decreased
and that of the short finite antenna is increased with respect to free space
values, when the antenna is in a lossy plasma and operated near the
plasma frequency. In addition, it appears that the conductance of both
near the plasma frequency is primarily a function of the near field. The
susceptance of both is found to change from capacitive to inductive at
the plasma frequency.

In order to get some idea of the influence of the finite electron
temperature on the infinite antenna admittance, Fig. 6 shows the admittance
for the same parameters as Fig. 2, except that T is now zero. In spite
of the fact that [?Q —= O when T —=(Q, the same numerical value of vacuum
sheath thickness is used in obtaining the results of Fig. 6 so that we may
to some extent attempt to separate the sheath and temperature effects.

It may be seen that the susceptance for the zero temperature case is
similar to that for the finite temperature curve of Fig. 2, the primary
difference being that the zero temperature susceptance is slightly more
capacitive, except in the vicinity of 0. 85 MHz, where the zero temper-
ature susceptance does not exhibit the oscillation present in the former
case. The conductance is also practically unchanged above the plasma
frequency, but is considerably different for f<fp, where the zero tem-
perature conductance is everywhere less than that when T = 1.5 xlO3
°k. A sharp minimum in the conductance is again found at about 1.475

MHz, but with about one-fifth the magnitude of the finite temperature

case, about the same ratio shown by the conductance maximum near
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Fig. 6. The infinite antenna admittance as a function of frequency with a vacuum
sheath thickness of 5 Dl’ for the zero temperature plasma.
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0.7 Mhz. The significance of the change in conductance with temperature
will be considered further below.

The antenna admittance for zero sheath thickness and with the
same parameter values as Figs. 2 and 6 are shown respectively on Figs.

7 and 8, for T=1. 5)‘:103 °K and T=0 °K. There is now a noticable difference
in both the conductance and susceptance for all the frequency range shown
for the two values of temperature. The zero temperature susceptance is
again more capacitive than the finite temperature case, for frequencies
above 0.7 MHz, but does not peak below fp, so that below 0.7 MHz, the
zero temperature susceptance is now more inductive than the latter case.
The conductance is again less for the zero temperature case, and like the
susceptance does not peak below fp as does the finite temperature result.

A conductance minimum is again seen below fp, but is broader in each case
than that observed for the 5]?1 thick sheath. Above fp, the finite temperature
conductance for the sheathless case differs by less than 1 percent from the
5 [i thick sheath values for both temperatures.

Perhaps the most interesting and significant feature of the results
shown in Fig. 3, 6, 7, and 8 is the admittance maxima exhibited by all but
the sheathless, zero temperature case. This is especially so because the
experimental results of Heikkila in Fig. 5 also show an admittance maxima
below the plasma frequency. The calculated results for the short linear
antenna in a cold plasma of Fig. 4 have no comparable maxima, on the
other hand, but do bear a remarkable similarity to the corresponding infinite
antenna curves of Fig. 8. This similarity would seem to strengthen a

supposition previously stated, that the near fields of both the infinite and
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finite antennas exercise the predominant influence on the admittance

near, and below, the plasma frequency, so that consequently, it may
be resonable to infer the qualitative frequency variation of the finite

antenna in this frequency range from the infinite antenna results.

A tentative conclusion might be reached from these results that
a finite plasma electron temperature and/or a sheath are required to
obtain an admittance maxima below the plasma frequency. This admitt-
ance maxima appears to be related to the rectification resonance de-
scribed by Takiyama (1960) and at first thought to occur at the plasma
frequency. Subsequent consideration by Harp and Crawford (1964), has
indicated that the resonance lies below fp and is related to the sheath
thickness and electron temperature, a result which our findings would
seem to support.

It is thus found from these calculations, that the susceptance of
the infinite antenna shifts in the capacitive direction with a decrease in
electron temperature on both sides of the plasma frequency. Removing the
sheath decreases the magnitude of the susceptance, in both the capacitive
and inductive susceptance regions. The conductance is primarily affected
by the sheath and finite temperature below the plasma frequency, where
a decrease in temperature or sheath thickness produces a decreased con-
ductance. It appears that the EK wave is only weakly excited above the
plasma frequency, but plays a greater role in the antenna behavior below
the plasma frequency.

This finding that the EK wave has only a weak effect upon the

antenna conductance above fp is in contrast to the results of Wait (1966),
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Seshadri (1965b) and Cohen (1962), who found the EK wave to be quite
strongly excited in their analyses. Wait and Cohen treated finite anten-
nas however, and their results may possibly be attributed to the small
antenna dimensions. Seshadri did analyze the infinite cylindrical antenna,
but considered only the radiation fields, and found that the power in the EK
and EM modes were on the same order of magnitude., Since the present
treatment includes the effect of the surface waves and near field absorp-
tion, it might be concluded that the power put into surface waves and
the near field is less sensitive to electron temperature than is the
radiation field. In addition, since as has been previously mentioned, the
radiated power is less than that lost by these latter means, the effect
of the electron temperature on the radiated power is masked.

Because the electron temperature does affect the antenna sus-
ceptance below the plasma frequency, Fig. 9a shows the admittance
at a single frequency, 1.4 MHz, as a function of the temperature, with
the electron collision frequency a parameter. Fig. 9b presents the re-
sults plotted as a function of the electron collision frequency, with the
temperature now a parameter. The T = 0 curve of Fig. 9b shows
the conductance increasing in direct proportion to the collision frequency;
a result also obtained from the finite antenna analysis. It is also of in-
terest to see that the susceptance has relatively little or no dependence
upon the collision frequency, a result which again is obtained for the
finite antenna. The most interesting aspect of 9a is that as the electron
temperature increases, the conductance becomes less sensitive to chang-

ing collision frequency, an effect which is shown in 9a as a coalescing of
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the various collision frequency curves with increasing temperature., Thus
is is seen that we may possibly interpret a large conductance below the
plasma frequency, if we use the cold plasma theory, to indicate a larger
collision frequency than is actually the case.

It is of interest to note that the same range of variation in
the electron collision frequency at a frequency of 2 MHz and electron
temperatures of O °K and 1, 500 °K produced less than a 1 percent change
in both the conductance and susceptance. This result for the conductance
indicates that collisional absorption is relatively unimportant at this fre-
quency in determining the power lost by the antenna, compared with the
radiated field and surface wave. The collisional effects increase in im-
portance as the plasma frequency is approached.

Figure 10 presents the antenna admittance variation, at
1.0 MHz, as a function of the vacuum sheath thickness, with the electron
temperature a parameter, and a constant electron collision frequency of
10 KHz. We see that an increasing sheath thickness leads to increasing

conductance and increasing inductive susceptance, over the range of

sheath thickness shown.
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iV. 3 Summary

As was stated in the introduction to this report, we would ideally
like to analyze the impedance characteristics of a finite dipole antenna
immersed in a plasma such as the ionosphere, taking into account com-
pressibility and sheath effects, as well as the ionospheric magnetic field.
We would in addition like to do a time domain analysis of such an antenna
in order to explicitly demonstrate the relaxation resonance effect.
Because of the extreme complexity of even the first part of this problem,
we have chosen to investigate instead, the plasma-immersed, infinite,
cylindrical dipole antenna, and have for the present, neglected the static
magnetic field.

The reasons for this approach have been the fact that the infinite
dipole antenna could be treated exactly, even to including the inhomogeneous
sheath and magnetic field, and the anticipation that the finite antenna re-
sults could at least be qualitatively inferred from the infinite antenna
results. The results presented here for the zero temperature plasma,
for both the finite dipole and the sheathless infinite antenna, are in
qualitiative agreement below the plasma frequency, and indicate the
reasonableness of inferring the finite antenna behavior from the infinite
antenna results, if care is used,.

We have found that for the infinite antenna, the admittance is
relatively unaffected by the plasma compressibility and sheath above
the plasma frequency. A decrease intemperature results in a decreased

conductance and a more capacitive susceptance, while a decrease in the

vacuum sheath thickness causes a somewhat smaller conductance and
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a less capacitive susceptance. Below the plasma frequency however,
these effects become important in determining the antenna susceptance,
where a decrease in the temperature leads to smaller conductance and
less inductive susceptance, while a decrease in sheath thickness leads
to a smaller conductance and generally more inductive susceptance. In
particular, an admittance maximum is found below the plasma frequency
when there is a sheath or finite electron temperature, but which is absent
for the zero temperature, sheathless situation. This admittance maximum
appears to be related to the rectification resonance of Takiyama.

The influence of the plasma temperature and sheath on the location
of the admittance maximum have not been established here; because of
the lengthy nature of the calculations, it has not been possible to do an
extensive parametric study of the admittance. However, we have found
from the numerical results presented, that for a fixed sheath thickness
of 5 Dl, , decreasing the temperature from 1, 500 °K to 0 °K results in
practically no shift in the location of the maximum, though the magnitude
is reduced by a factor of about 5. Similarly, decreasing the sheath thick-
ness from 5 to 0 DX, at a fixed temperature of 1, 500 °k produces a
slight downward shift in the location of the conductance maximum from
about 0. 75 MHz to 0.6 MHz, although the susceptance maximum remains
at about the same frequency, 0.8 MHz. This may be a question worth
pursuing further, since some other theoretical results, based on a
very much simpler approach by Harp and Crawford, (1964) indicate that
the rectification resonance should shift upwards towards the plasma

frequency with decreasing sheath thickness. It may be that the surface
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waves which can propagate on the infinite antenna, even below the plasma
frequency when there is a sheath, can significantly alter our results in
this regard, compared with the finite antenna.

It has also been found for the infinite antenna that temperature
and collisional effects are to an extent, equivalent below the plasma
frequency, eachk acting to increase the antenna conductance. Above the
plasma frequency, neither the temperature nor collision frequency exercise
much influence over the admittance. The latter occurs because the free
space conductance and susceptance are of nearly equal magnitude, and
therefore not sensitive to the small imaginary part of €r determined by
the collision frequency.

A change in the sign of the susceptance of the infinite antenna is
observed above, but within 1% of the plasma frequency, as nearly as can
be found from the calculations. While the sheath may be expected to
influence the location of the susceptance zero, the sheath thickness for
a realistic electron temperature is so small compared with the EM wave-

length that this is not a determining factor here. A conductance minimum

is also found near to, but below the plasma frequency. This minimum

is broader for the sheathless case and farther from the plasma frequency

than is the corresponding 5 Df, thick sheath result. This conductance

minimum may be explained on the basis of a cut off in the propagation

of the surface and space waves as the plasma frequency is approached.
We have further found that, while the finite antenna in a cold,

lossy plasma does exhibit a change in sign of the susceptance in the

vicinity of the plasma frequency, the conductance has no minimum such
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as is found for the infinite antenna, unless the collision frequency to
excitation frequency ratio is on the order of, or lower than, the finite
antenna free space conductance to susceptance ratio. This behavior of

the short finite antenna has been explained here by observing that in a

lossy plasma, the reactive antenna near field interacts with the imaginary
part of the plasma permittivity to produce in-phase currents larger than
those produced by the much smaller in-phase field. If the plasma is in
addition, compressible, it appears that the conductance may be made
larger, but we cannot conclude from our study whether or not the conductance
of the finite antenna would then show a minimum near the plasma frequency,
as is found for the infinite antenna. This would appear to depend upon the
antenna length, which even when short compared with the EM wavelength,
may be long compared with the EK wavelength. It is interesting to mention
that the admittance of a spherical dipole in the ionosphere, given by Heikkila
(1965a), has no conductance minimum at the plasma frequency, but does

exhibit an admittance maximum below the plasma frequency.
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V. Comments and Conclusions

An analysis of the admittance of an infinite cylindrical antenna
excited by a circumferential voltage gap, and immersed in a compressible,
lossy plasma medium has been discussed. The sheath which forms about
a body at floating potential in a plasma has been represented by a vacuum
sheath model, where the actual sheath is replaced by a free space layer,
and an inhomogeneous sheath model, where the actual sheath inhomogeneity
is taken into account. Numerical results for the admittance over a frequency
range including the electron plasma frequency, and for other parameter values
typical of the ionosphere have been given for the vacuum sheath model. The
motivation for this work has been a desire to investigate the influence of a
plasma upon the impedance characteristics of an antenna immersed in it,
to possibly acquire a better qualitive understanding of the radio frequency
probe as a tool for plasma,and thus ionospheric,diagnostics.

The numerical results which have been obtained are significant in
a number of respects. It has been shown that even the relatively low electron
collision frequencies typical of the lower ionosphere (E and F regions) are
large enough to significantly increase the conductance of a short (compared
to the EM wavelength) antenna immersed in the ionospheric type plasma of
zero temperature. We have also found from the infinite antenna analysis that
the finite temperature and collisional effects are interdependent, thus further
increasing the importance of taking the collisions into account, especially
of course, below the plasma frequency. A further finding of interest is the
presence of an admittance maximum for the infinite antenna below the plasma

frequency, which disappears only when there is no sheath and the electron
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temperature is zero. Although such a feature has been found by others

for the quasi-static approximation, this is the first time that we are

aware of a solution to the full boundary value problem for the compressible
plasma which shows this property.

A comparison of the finite antenna admaittance in a zero tempera-
ture plasma, using King's theory, with the only infinite antenna results
where a direct comparison can be made, the zero temperature, sheath-
less case, shows there to be a good qualitative similarity in their behavior
below the plasma frequency. This similarity is significant in that, while
it does not guarantee we are on the right track in hoping to learn some-
thing about the finite antenna's behavior from results for the infinite
antenna, it at least does not contradict the possibility of doing this.

A number of objections, other than that to the infinite antenna
analysis used here, may be raised to the numerical results we have obtained.
When we consider that the medium in which we are interested is the iono-
sphere, the inclusion of a static magnetic field in the analysis is obviously
desirable. In addition, the more accurate representation of the sheath by
the inhomogeneous sheath model, rather than the vacuum sheath model
employed exclusively here to obtain the numerical results presented,
would be also desirable. Some preliminary numerical computations have
been made for both the inhomogeneous sheath model, but without a static
magnetic field, and the vacuum sheath, zero temperature case, with a
z-directed magnetic field. These computations are considerably more
lengthy, especially the former, than those required to obtain the results

given here. However, it is anticipated that some admittance curves as a
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function of frequency will be obtained for these situations, and these
results will be reported on subsequently. It appears that it may also be
feasible to investigate the warm plasma with the static magnetic field
and possibly also including the inhomogeneous sheath. A decision on
whether to extend our analysis to this situation will be made after some
of the cold plasma, static magnetic field results have been obtained.

We should also mention that the representation of the plasma by
the fluid equations rather than using the more rigorous kinetic approach
is open to objection, particularly since the possibility of Landau damping
is not encompassed in the fluid approach. In the absence of collisions,
the fluid approach predicts zero conductance below the plasma frequency,
whereas the kinetic theory shows there to be some lossyness due to
Landau damping. The fluid equations represent an averaging of the plasma
response, which while seemingly reasonable in regions where the change
in plasma properties occur slowly in comparison with the Debye length,
may be on less safe ground in regions of rapid change, such as the sheath.
A study by Pavkovich (1963) for the planar geometry contains a comparison
between fluid and kinetic results for the impedance of an inhomogeneous
sheath, which is claimed to show the unrealiability of the fluid approach.
However, it appears that the authors conclusion about this may be some-
what prejudiced a priori in favor of the kinetic theory, as the results
obtained by the two approaches do not seem that much at variance.

It has been noted that neglect of electron collisions does not appear
to be a reasonable assumption for the warm plasma. Even in the case of

a cold plasma, the collisions may have a strong influence on the admittance
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of a short antenna. Thus it would seem that radiation resistance cal-
culations which are carried out using the far fields, are not particularly
useful, since they of necessity are for the lossless medium. A further
objection can be raised to an analysis such as that of Kuehl (1966), which
while using the kinetic approach for finding the radiation resistance of

a short antenna, (collisions are neglected here also) assumes a specified
current distribution, and is actually a solution for a current source rather
than a physical antenna. In addition, in order for the antenna to be short
compared with the EK wavelength, (an implicit assumption in the analysis)
an antenna length on the order of a few centimeters or less would be re-
quired for the ionospheric plasma. This is a clearly impractical length
for actual experimentation at the frequencies involved, since the reactive
impedance component would be very much larger than the resistive
component of interest. It is interesting however to note that Kuehl (1967),
presents some numerical results for the model mentioned above, compar-
ing the resistance of the antenna obtained from both the hydrodynamic and
kinetic theories, for the collisionless plasma. His findings show that for
antennas more than a few D, long, the two theories produce nearly ident-
ical resistance values, above the plasma frequency. This indicates that
the hydrodynamic approach is not an unreasonable one to use, particularly

if electron collisions are also included in the analysis, so that the hydro-

dynamic neglect of Landau damping may become less important.
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The purpose of this discussion is to show that while the separate
parts of the integrand of Eq. (35) have non-integrable singularities at B=KEO
their sum does not. If we examine the free space current first, given by

Eq. (36), we find that

4V K ®Eo _
I (z,0)=+4 O Eo cos2<Bz> S 2<B) L~ dB
TZO 7T 0 )‘EO (JC + YC ) (Ala)
QO \ .
2V,cK cos (Bz) S®[J T +Y Y
Ioi (Z: w ) = + 0 Eo C C2 C : C dB
" Ago Jo v Y. J(am)

where JC and YC are the Bessel and Neumann functions of order zero and
argument AEOC and the prime denotes differentiation with respect to argu-
ment. Now the singular part of Ior is contributed only by the denominator,

so we examine its behavior as B-—KE . Using the small argument forms for

o)

J and Y, we obtain

1 1 1
R Sy o T T P
;{Eo (Jc +Yc) /\Eo Y. [ZAEoln(AEoC) ] (A2)
If we let
B=KEO (1-A) ; A K1
then

A‘Eoz =2 KEO2

and the singular part of the integrand of (Ala) is given by

T24A
‘ 3
8 KéOA[ln(‘\,/ 28 Ky.c ] (A3)
T2aA
2 ' o2
4 Kpo A (In A)
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1
which is integrable at A\ = 0 since

dx 1
x(ln x) In (x)

However, when we consider the singular part of the integrand

of I . we have
o}

' '
JC JC+YC YC Y

2 2,
AEO(JC + Yc ) AEo Y

Q

R

3
AEo clIn (AEOC) (A4)

Using the same scheme as for Ior we find, using (A4), that the singular part

>

of the Ioi integrand becomes

d A’
K%Oc A(nA) (A5)

1
which is not integrable at A =0 since

dx

x In x

In(Ilnx)

The plasma contribution to (35) can be investigated in a similar
fashion. We require for this purpose, the Wronshian expression for the small

argument limits, which are

10




Wi(c, s) ~ 4i 1n (c/s) /TT

W(c , s)

R

41 [T A e

W(c, s) = -4i /TrAEos

Wi, s) = 2ifc/s-sle) ITT

We may show that near 8§ = K

Fo,
(2)’
R ~ KEO 5®) Ho (AEOS)
7&m AE02 W(c,s )

(A6)

Thus the real and imaginary parts of AI, denoted by AIr and AIi become,

in the vicinity of 8 = KEO

Al = o "Eo cos (Bz) S (B) 4B
2,. 2 2
: 7?07-( AEo T+ Y

~ o "Eo cos (Bz) g(B)dB
2 2
7?o’/“r AEo Yc (A7)
Al = - 8 VoKro cos(Bz) S (B) Jg Jo ¥ Yg Yo dp
1 TZO7T /lEj Wwic, s )l JC2 + YC2

—8V, Kgo cos(Bz) T (B) Yq dp
n Age W, ol v

—4V K

. o "Eo cos(Bz) S (B)
=~ Ty 2
7‘Io m A‘Eo Y

dg
c (A8)
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where J_ and Ys are zero order Bessel and Newmann function of argument

A

Eo

and Io integrals, in the vicinity of B=KE0 are equal but of opposite sign,

)

s. We see upon comparing (A7) and (A8) with (A1) to (A4) that the AI

thereby cancelling the non-integrable singualrities. Note that while singular
parts of (35) thus cancel, the integrand does not become zero. That part of
R

Kn which has been neglected in obtaining (A6) as being small compared with

the dominant terms in kEo, does contribute to the integral at B=KEO

The same result can be established directly from Eq. (39), which
is an alternate form for Eq. (35). It may be seen that near B=KE0, A/D,
which appears in (39), behaves as

2.1,

D kEo
Thus, the integrand of (39) is independent of AEO, and therefore integrable
at BzKEo.

We have so far implicitly assumed a non-zero collision frequency,
so that the only singularities of concern are those caused by )'Eo. If however,
the collision frequency is zero, then while no singularities arise because of

AE or AP becoming zero,as long as s#c, singularities are instead caused by
cancellation of additive terms in D, which while complex for non-zero collision
frequencies, become pure real or pure imaginary for zero collision frequency,
and thus can have real values of 8 as roots to D(8) = 0. Seshadri (1965b) has
discussed this question in some detail, so we will not pursue it here.

The free space situation is recovered, so far as the type of singularity is

concerned, only if the collision frequency, sheath thickness and electron

temperature all become zero.
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Our problem is to obtain a final answer from our integration that
is accurate to the desired number of places. If the true answer is F, then

we have from (62)

N
F= f.+E=-F+E (B1)
1 -
1i=1
where 2m+k
,
f,= Z djmf(ai+jh):i:Ei (B2)
j=o

and E is the accumulated convergence error arising from the fact that the
contribution of each interval, fi’ is not exactly known due to the convergence
error Ei associated with each interval. We assume that the individual fij:
f(ai+jh) are known as accurately as desired, so that the final accuracy is
determined by Ei alone. The problem now is to find a means for specifying
the individual allowable Ei in order to keep E within the desired limits.
There are three rather obvious methods that might be used to deter-
mine the allowable E.l for each interval. (1) One method would be to keep
the convergence error Ei less than a certain fraction of the sum for F to
the present interval. (2) A second method would be to determine Ei from
the ratio of the largest previous fi obtained to the present fi in order to
keep the first uncertain figure for each fi . contribution in the same location

relative to the decimal point. (3) A third method could be to simply hold

3



Ei constant throughout. This latter method would be simplest to employ,
but less efficient in terms of abscissa points required in comparison with
the second. These three methods are examined in turn below.

(1) If we start out with an allowable normalized convergence error

per interval of EC’ we then have

e <E IF

c |
then

EISEL) +Eolf +|+ . . +E[F (B3)

C
< EC[N i) #(N-D 1] +. . . |fn\]
If the fi are of nearly equal magnitudes (as was actually the case with the

variable interval width integration technique) then

IEKEC £ (N-1) (B4)

J
i=0

=E Ity N(N+1)/2

2
<E. f, | N%/2

Now if all the fi were of the same sign, then

F=N fl

TS




so that

}-E—{zE ~E _N/2 (B4a)
Fl& C

If on the other hand, the fi alternated in sign, so that

[Fl=|t,|
then

'Eizl—g—lz]a N /2 (B4b)
FlIF

We see that in either case, the normalized error En=[E/F|is large. It was

not unusual to have N=60, and with EC=2x10—4t as was used, then

6x10 5 <E_<0.36
(2) We have now
el <t Bqle /1]

) < It Eo|f [t

<
<
s0 El<E N | (B5)
where fm is the largest value of fi' We note that fm is not a prioriknown
in the actual calculation, since only information on fi already obtained is
available, so that fm may increase during the course of the summing process.

This means that the actual errors may be less thanthat indicated by (B5),

™



unless fm of course happens to be fl.

Now, if all the fi were nearly equal and of the same sign,

then

~J/

F =N flz Nf

m

SO

|—| % (B6a)
On the other hand, for alternating fi’ then

[Fl=lt =l | (B6b)
SO

P

—tr—|=NE

EHE ox g,
Again, for N=60, and E=2x10"", then

2x10" 4 < E_<0.12

(3) In this case

E|<ELI]

Byl SE¢ I

[yl <Eg Iyl
SO

|E|<EC [[fll + .. . F lle] (B7)

We see that the error here is approximately the same as (B5) for nearly

equal fi‘ If however, the fi vary considerably in magnitude, then this

T6




method produces bet 7. Method 2 was used instead of 3 however,
since over most of the range of integration where the major contribution

to F arose, the fi were nearly the same in magnitude, and the two methods
are equivalent. In the final stages of the integration, the fi were rapidly
decreasing however, in relation to 'f" and there is no advantage to finding
each ’fi to say, 4 significant figures, when the only significant figures in

the current E which will be changed by this fi’ are the last one or two places.
Method 2 essentially consists of adding a column of figures given by fi’ with
a common decimal point, and having the last significant figure of each fi

fall in the same column.

Since the conductance is obtained from a much smaller integration
range than the susceptance, and in addition does not change in sign over that
interval, as does the susceptance, it is generally obtained with a higher
accuracy. There is also a truncation error associated with the susceptance,
which has been previously discussed, (and which has not been considered
here in finding E, assumed due alone to the convergence errors of each
interval) due to terminating the integration at a finite value of 3, further
increasing the susceptance error in comparison with the conductance.

We should also mention that the convergence test used here, dis-
cussed in section III on the numerical analysis, is a conservative one. It
was consistently found that the fi were accurate to one more significant
figure than was indicated by the convergence test. This means that while

the actual value used for E . in the calculations was 2x10_4, the effective

C
EC was about an order of magnitude less, aswas also the resulting accumu-

lated, normalized convergence error En. We can thus state that we should

T7



have En value arising from our calculations no larger than 10_2 in the
most unfavorable situation.

Finally, it is worth while to point out that the error testing technique
and variable width integration interval technique which were used for these
calculations was useful in finding programming errors reflected in the fi’
Any error in the f;, as a function of the integration variable resulted in very
small integration intervals in the immediate vicinity of the error. Similarly,
specifying EC to be less than the accuracy with which the fi were obtained
resulted also in very small integration intervals, which oscillated in size.
The integration technique developed for these calculations should be very
useful and accurate for handling any number of integration problems which

involve integrand functions which are time consuming to evaluate.
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